传统Python语言的主要控制结构是for循环。然而,需要注意的是for循环在Pandas中不常用,因此Python中for循环的有效执行并不适用于Pandas模式。一些常见控制结构如下。

成都创新互联是专业的三台网站建设公司,三台接单;提供网站建设、成都网站设计,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行三台网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
所有的程序最终都需要一种控制执行流的方式。本节介绍一些控制执行流的技术。
for循环是Python的一种最基本的控制结构。使用for循环的一种常见模式是使用range函数生成数值范围,然后对其进行迭代。
- res = range(3)
 - print(list(res))
 - #输出:[0, 1, 2]
 
- for i in range(3):
 - print(i)
 - '''输出:
 - 0
 - 1
 - 2
 - '''
 
使用for循环的另一种常见模式是对列表进行迭代。
- martial_arts = ["Sambo","Muay Thai","BJJ"]
 - for martial_art in martial_arts:
 - print(f"{ martial_art} has influenced\
 - modern mixed martial arts")
 - '''输出:
 - Sambo has influenced modern mixed martial arts
 - Muay Thai has influenced modern mixed martial arts
 - BJJ has influenced modern mixed martial arts
 - '''
 
while循环是一种条件有效就会重复执行的循环方式。while循环的常见用途是创建无限循环。在本示例中,while循环用于过滤函数,该函数返回两种攻击类型中的一种。
- def attacks():
 - list_of_attacks = ["lower_body", "lower_body",
 - "upper_body"]
 - print("There are a total of {lenlist_of_attacks)}\
 - attacks coming!")
 - for attack in list_of_ attacks:
 - yield attack
 - attack = attacks()
 - count = 0
 - while next(attack) == "lower_body":
 - count +=1
 - print(f"crossing legs to prevent attack #{count}")
 - else:
 - count += 1
 - print(f"This is not lower body attack, \
 - I will cross my arms for# count}")
 - '''输出:
 - There are a total of 3 attacks coming!
 - crossing legs to prevent attack #1
 - crossing legs to prevent attack #2
 - This is not a lower body attack, I will cross my arms for #3
 - '''
 
if/else语句是一条在判断之间进行分支的常见语句。在本示例中,if/elif用于匹配分支。如果没有匹配项,则执行最后一条else语句。
- def recommended_attack(position):
 - """Recommends an attack based on the position"""
 - if position == "full_guard":
 - print(f"Try an armbar attack")
 - elif position == "half_guard":
 - print(f"Try a kimura attack")
 - elif position == "fu1l_mount":
 - print(f"Try an arm triangle")
 - else:
 - print(f"You're on your own, \
 - there is no suggestion for an attack")
 
- recommended_attack("full_guard")#输出:Try an armbar attack
 
- recommended_attack("z_guard")
 - #输出:You're on your own, there is no suggestion for an attack
 
生成器表达式建立在yield语句的概念上,它允许对序列进行惰性求值。生成器表达式的益处是,在实际求值计算前不会对任何内容进行求值或将其放入内存。这就是下面的示例可以在生成的无限随机攻击序列中执行的原因。
在生成器管道中,诸如 “arm_triangle”的小写攻击被转换为“ARM_TRIANGLE”,接下来删除其中的下划线,得到“ARM TRIANGLE”。
- def lazy_return_random_attacks():
 - """Yield attacks each time"""
 - import random
 - attacks = {"kimura": "upper_body",
 - "straight_ankle_lock": "lower_body",
 - "arm_triangle": "upper_body",
 - "keylock": "upper_body",
 - "knee_bar": "lower_body"}
 - while True:
 - random_attack random.choices(list(attacks.keys()))
 - yield random attack
 - #Make all attacks appear as Upper Case
 - upper_case_attacks = \
 - (attack.pop().upper() for attack in \
 - lazy_return_random_attacks())
 
- next(upper-case_attacks)
 - #输出:ARM-TRIANGLE
 
- ## Generator Pipeline: One expression chains into the next
 - #Make all attacks appear as Upper Case
 - upper-case_attacks =\
 - (attack. pop().upper() for attack in\
 - lazy_return_random_attacks())
 - #remove the underscore
 - remove underscore =\
 - (attack.split("_")for attack in\
 - upper-case_attacks)
 - #create a new phrase
 - new_attack_phrase =\
 - (" ".join(phrase) for phrase in\
 - remove_underscore)
 
- next(new_attack_phrase)
 - #输出:'STRAIGHT ANKLE LOCK'
 
- for number in range(10):
 - print(next(new_attack_phrase))
 - '''输出:
 - KIMURA
 - KEYLOCK
 - STRAIGHT ANKLE LOCK
 - '''
 
语法上列表推导式与生成器表达式类似,然而直接对比它们,会发现列表推导式是在内存中求值。此外,列表推导式是优化的C代码,可以认为这是对传统for循环的重大改进。
- martial_arts = ["Sambo", "Muay Thai", "BJJ"]
 - new_phrases [f"mixed Martial Arts is influenced by \
 - (martial_art)" for martial_art in martial_arts]
 
- print(new_phrases)
 - ['Mixed Martial Arts is influenced by Sambo', \
 - 'Mixed Martial Arts is influenced by Muay Thai', \
 - 'Mixed Martial Arts is influenced by BJJ']
 
有了这些基础知识后,重要的是不仅要了解如何创建代码,还要了解如何创建可维护的代码。创建可维护代码的一种方法是创建一个库,另一种方法是使用已经安装的第三方库编写的代码。其总体思想是最小化和分解复杂性。
使用Python编写库非常重要,之后将该库导入项目无须很长时间。下面这些示例是编写库的基础知识:在存储库中有一个名为funclib的文件夹,其中有一个_init_ .py文件。要创建库,在该目录中需要有一个包含函数的模块。
首先创建一个文件。
- touch funclib/funcmod.py
 
然后在该文件中创建一个函数。
- """This is a simple module"""
 - def list_of_belts_in_bjj():
 - """Returns a list of the belts in Brazilian jiu-jitsu"""
 - belts= ["white", "blue", "purple", "brown", "black"]
 - return belts
 
- import sys;sys.path.append("..")
 - from funclib import funcmod
 - funcmod.list_of_belts_in-bjj()
 - #输出:['white', 'blue', 'purple', 'brown', 'black']
 
如果库是上面的目录,则可以用Jupyter添加sys.path.append方法来将库导入。接下来,使用前面创建的文件夹/文件名/函数名的命名空间导入模块。
可使用pip install命令安装第三方库。请注意,conda命令(
https://conda.io/docs/user-guide/tasks/manage-pkgs.html)是pip命令的可选替代命令。如果使用conda命令,那么pip命令也会工作得很好,因为pip是virtualenv虚拟环境的替代品,但它也能直接安装软件包。
安装pandas包。
- pip install pandas
 
另外,还可使用requirements.txt文件安装包。
- > ca requirements.txt
 - pylint
 - pytest
 - pytest-cov
 - click
 - jupyter
 - nbval
 - > pip install -r requirements.txt
 
下面是在Jupyter Notebook中使用小型库的示例。值得指出的是,在Jupyter Notebook中创建程序代码组成的巨型蜘蛛网很容易,而且非常简单的解决方法就是创建一些库,然后测试并导入这些库。
- """This is a simple module"""
 - import pandas as pd
 - def list_of_belts_in_bjj():
 - """Returns a list of the belts in Brazilian jiu-jitsu"""
 - belts = ["white", "blue", "purple", "brown", "black"]
 - return belts
 - def count_belts():
 - """Uses Pandas to count number of belts"""
 - belts = list_of_belts_in_bjj()
 - df = pd.Dataframe(belts)
 - res = df.count()
 - count = res.values.tolist()[0]
 - return count
 
- from funclib.funcmod import count_belts
 
- print(count_belts())
 - #输出:5
 
可在Jupyter Notebook中重复使用类并与类进行交互。最简单的类类型就是一个名称,类的定义形式如下。
- class Competitor: pass
 
该类可实例化为多个对象。
- class Competitor: pass
 
- conor = Competitor()
 - conor.name = "Conor McGregor"
 - conor.age = 29
 - conor.weight = 155
 
- nate = Competitor()
 - nate.name = "Nate Diaz"
 - nate.age = 30
 - nate.weight = 170
 
- def print_competitor _age(object):
 - """Print out age statistics about a competitor"""
 - print(f"{object.name} is {object.age} years old")
 
- print_competitor_age(nate)
 - #输出:Nate Diaz is 30 years old
 
- print_competitor_age(conor)
 - #输出:Conor McGregor is 29 years old
 
类和函数的主要区别包括: